
The Ergodic Hypothesis 

THE 
A Comp 
Problem 

here are a few problems in physics that stir deep emotions every time they 
are discussed. Since physicists are not generally speaking an emotional group 

in licated T of people, the existence of these sensitive issues must be considered a strong 
indication that something is amiss. One such issue is the interpretation of 
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quantum mechanics. I will take a moment to discuss that problem because it bears 
directly on the main topic of this article. 

In quantum mechanics, if the question asked is a technical one, say how to compute 
the energy spectrum of a given atom or molecule, there is universal agreement among 
physicists even though the problem may be analytically intractable. If on the other hand 
the question asked pertains to the theory of measurement in quantum mechanics, that 
is, the interpretation of certain experimental observations performed on a microscopic 
system, it is virtually impossible to find two physicists who agree. What is even more 
interesting is that usually these controversies are void of any physical predictions and are 
entirely of an epistemological character. They reflect our difficulty in bridging the gap 
between the quantum mechanical treatment of the microscopic system being observed 
and the classical treatment of the macroscopic apparatus with which the measurement is 
performed. It is usually argued that we, physicists, have difficulty comprehending the 
formalism of quantum mechanics because our intuition is macroscopic, hence classical, 
in nature. Now if that were the case, we should have as much difficulty with special 
relativity, since we are hardly used to speeds comparable to that of light. Yet, strange 
as it seems at first, I have never heard physicists argue about the "twin paradox," the 
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classic example of an unexpected prediction of Einstein's relativity. So there must be 
something about quantum mechanics that "rubs us" the wrong way. The question is 
what? 

Perhaps the best way in which the strange predictions of quantum mechanics can 
be quantified is a certain inequality first formulated by Bell (Bell 1965). For illustration, 
consider a positronium atom, with total angular momentum zero, that decays into an 
electron and a positron. Suppose we let the electron and the positron drift apart and 
then measure their spin components along two axes by passing them through two 
magnetic fields. Now in quantum mechanics the state of the positronium atom is a 
linear superposition of spin-up and spin-down states: (I T)+ I L)- - 1 J-)+ 1 T)-)/a. 
We could therefore ask ourselves whether in each passage through the apparatus the 
electron and the positron have a well-defined spin (up or down), albeit unknown to us. 
Some elementary probabilistic reasoning shows immediately that if that were the case, 
the probabilities for observing up or down spins along given axes would have to obey 
Bell's inequality. The experimentally measured probabilities violate this inequality, in 
agreement with the predictions of quantum mechanics. So the uncertainties in quantum 
mechanics are not due to incomplete knowledge of some local hidden variables. What is 
even stranger is that in a refinement of the experiment in which the axes of the magnetic 
fields are changed in an apparently random fashion (Aspect, Grangier, and Roger 1982), 
the violation of Bell's inequality persists, indicating correlations between space-like 
events (that is, events that could be causally connected only by signals traveling faster 
than the speed of light). While in this experiment no information is being transmitted 
by such superluminal signals, and hence no conflict with special relativity exists, the 
implication of space-like correlations hardly alleviates the physicist's uneasiness about 
the correct interpretation of quantum mechanics. Of course this uneasiness is not felt by 
all physicists. Particle physicists, for instance, take the validity of quantum mechanics 
for granted. To wit, anybody who reads Time knows that they, having "successfully" 
unified weak, electromagnetic, and strong interactions within the framework of quantum 
field theory, are presently subduing the last obstacle, quantizing gravity by unifying all 
interactions into a quantum field theory of strings. And they are doing so in spite of the 
fact that the existence of classical gravitational radiation, let alone that of the quantized 
version (gravitons), has not been established experimentally. 

An even older controversy, which in the opinion of some physicists has long 
ceased to be an interesting problem, concerns the ergodic hypothesis, the subject of 
this discussion. I will try to elaborate on this topic as fully as my knowledge will 
allow, but, by way of introduction, let h e  just say that the ergodic hypothesis is an 
attempt to provide a dynamical basis for statistical mechanics. It states that the time- 
average value of an observable-which of course is determined by the dynamics-is 
equivalent to an ensemble average, that is, an average at one time over a large number 
of systems all of which have identical thermodynamic properties but are not identical 
on the molecular level. This hypothesis was advanced over one hundred years ago 
by Boltzmann and Maxwell while they laid the foundations of statistical mechanics 
(Boltzmann 1868, 1872 and Maxwell 1860, 1867). The general consensus is that the 
hypothesis, still mathematically unproven, is probably true yet irrelevant for physics. 
The purpose of this article is to review briefly the status of the ergodic hypothesis from 
mathematical and physical points of view and to argue that the hypothesis is of interest 
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not only for statistical mechanics but for physics as a whole. Indeed the mystery 
of quantum mechanics itself may possibly be unraveled by a deeper understanding 
of the ergodic hypothesis. This last remark should come as no surprise. After all, 
the birth of quantum mechanics was brought about by the well-known difficulties of 
classical statistical mechanics in explaining the specific heats of diatomic gases and 
the blackbody radiation law. I shall elaborate on the possible connection between the 
ergodic hypothesis and the resolution of these major puzzles in the last part of this 
article. 

The Mathematics of the Ergodic Hypothesis 

I shall begin my presentation with the easier part of the problem, the mathematical 
formulation of the ergodic hypothesis. Consider some physical system with N degrees 
of freedom and let qh  . . . , q~ be its positions and p, ,  . . . , p ~  its momenta. We shall 
assume that the specification of the set of initial positions {qO} and momenta {po} at 
time t = 0 uniquely specifies the state of the system at any other time t via the equations 
of motion: 

9qi (t) - - 9qi ({q(t)}, {~( t )})  
at a t  

ana 

The time evolution of the system can be represented as a path, or trajectory, through 
phase space, the region of allowed states in the space defined by the 2N independent 
coordinates {q} and {p}. An observable of this system 0 is an arbitrary function of 
{q} and {p}, O({q}, {p}). The time-average value of some observable O({q}, {p}) 
along the phase-space trajectory starting at t = 0 at {qo}, {po} is defined as 

Obviously the integral in Eq. 2 makes sense only for suitable functions of {q} and {p}, 
which are the only ones we shall consider. In fact we shall further restrict the class of 

- 
observables to those for which l i m ~ - ~ ~  OT exists. (This is not a severe restriction; for 
instance, if O({q(t)}, {~(t)})  is bounded along the trajectory, the limit clearly exists.) 
The notation in Eq. 2 makes clear that, a priori, time-average values depend upon the 
initial conditions {qo} and {po}. 

As time passes, the trajectory of the system winds through the phase space. If 
the motion takes place in a bounded domain, one might expect that as T Ã‘ co the 
average values of most observables settle down to some sort of equilibrium values 
(time-independent behavior). What would the phase-space trajectory look like if the 
system approached dynamical equilibrium? One could characterize it by saying that the 
frequency with which different neighborhoods of the phase space are visited converges 
to some limiting value p({q}, {p}) at each point in phase space. That such limiting 
frequencies exist under quite general circumstances was shown in 1927 by Birkhoff 
(see Birkhoff 1966) and constitutes the first step towards bridging the gap between 
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dynamics and statistics. Indeed, Birkhoff's theorem allows one to replace time averages 
by ensemble averages, defined as follows. Let the state of the system be specified by 
the sets {q} and {p}, and postulate that the probability for the system to be in the 
neighborhood of the state ({q}, {p}) is 

That is, the general form of the probability measure is the time-independent frequency p 
times the volume element of the phase space. A particular probability measure specifies 
completely a particular ensemble of representative systems; that is, it gives the fraction 
of systems in the ensemble that are in the state ({q}, {p}). In keeping with usual 
probabilistic notions, I shall assume that the probability measure has been normalized 
so that the integral of the probability measure for all possible states ({q}, {p}) is unity, 

The ensemble average of the observable O({q}, {p}) is defined as 

Birkhoff's theorem states that, if the motion is restricted to a bounded domain, 
then for many initial conditions there exists an ensemble (probability measure) such 
that the time-average value of the observable equals an ensemble average: 

Please note that Eq. 6 indicates that the time-average value of 0 ({q}, {p}) becomes 
independent of the initial conditions {go} and {po} as T + oo. As already mentioned 
above, this is true for many, but generally not all, initial conditions. If Eq. 6 is true 
for almost all initial conditions (for all points in the allowed phase space except for a 
set of measure zero), the flow through phase space described by Eqs. 1 must be fully 
ergodic; that is, for almost all initial conditions {qo}, {po} and with probability 1, the 
flow passes arbitrarily close to any point {q}, {p} in phase space at some later time. 
The assumption in statistical mechanics that time averages of macroscopic variables 
can be replaced by ensemble averages (that is, that Eq. 6 holds) is therefore called the 
ergodic hypothesis. 

In general, however, the flow through the phase space defined by the equations of 
motion may not cover the whole of the allowed phase space for almost all initial con- 
ditions. Instead the allowed phase space is divided into several "ergodic" components, 
that is, subregions 0, of the phase space such that if the flow starts in subregion 0;, 
then there exists a time t at which the flow will touch any given neighborhood in the 
set of neighborhoods covering 0,. Moreover the flow remains in 0, for all time. Con- 
sequently, time-average values do depend on knowing in which "ergodic component" 
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the system was started. 

The Ergodic Hypothesis and the Equipartition of Energy. In statistical mechanics 
the ergodic hypothesis, which proposes a connection between dynamics and statistics, 
is sometimes regarded as unnecessary, and attention is placed instead on the assumption 
that all allowed states are equally probable. In this paper I emphasize that when time 
averaging is relevant to a problem, the assumption of equal a priori probabilities is 
essentially equivalent to the ergodic hypothesis (Eq. 6). To see this I will restate the 
general problem and gradually narrow it down to the context of classical statistical 
mechanics. 

In general, given a phase space f2 and a probability density p({q}, {p}), one has 
defined an ensemble. Furthermore one can consider a map of the phase space onto 
itself. (An example is provided by Eqs. 1, which are really a set of maps indexed 
by the continuous parameter t ) .  A natural question to ask is whether the probability 
measure 

is invariant under this map. As we have said, Birkhoff's theorem states that under 
many circumstances such invariant measures exist and allow the replacement of time 
averages by ensemble averages. Thus the existence and construction of all the invariant 
measures for a certain flow is the first of two mathematical problems related to the 
ergodic hypothesis. 

As stated so far this problem is much more general than the one of interest to 
Boltzmann and Maxwell in connection with the foundations of statistical mechanics. 
Indeed, the existence of a probability measure left invariant by a given set of maps can 
be investigated whether or not the sets {q} and {p} defining the maps are canonically 
conjugate variables derivable from a Harniltonian, whether the set of maps is discrete or 
continuous, etc. At present the construction of such invariant measures is being actively 
pursued by researchers studying dynamical systems, especially dissipative ones such 
as those relevant to the investigation of turbulence (for example, systems described 
by the Navier-Stokes equations). (See the section Geometry, Invariant Measures, and 
Dynamical Systems in "Probability and Nonlinear Systems.") 

Of particular interest in statistical mechanics, especially in connection with the er- 
godic hypothesis, is the invariant measure appropriate for describing physically isolated 
systems. The ensemble specified by this measure is traditionally called the microcanoni- 
cal ensemble. The systems of interest are characterized by nonlinear interactions among 
the constituents and by a very large number of degrees of freedom. Generically, certain 
observables of a physically isolated system, such as the total energy and electric charge, 
are conserved; that is, they remain constant at their initial values. So let {I, ({q}, {p})}, 
i = 1, . . . , M be the complete set of independent, conserved observables of a system 
with N degrees of freedom. Obviously M < 2N. Since the flow in Eqs. 1 obeys 
all these conservation laws, it is clear that any invariant measure of the flow must be 
compatible with all the conservation laws. Consequently the probability measure must 
contain a delta function for each conserved quantity so that the probability is nonzero 
only when the conservation law is satisfied. (A delta function 6(x - xn) can be thought 
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of as having the value & for x values between XQ - e and XQ + e for any e, no matter 
how small, and the value 0 everywhere else. The integral of a delta function is thus 
equal to unity.) 

The fundamental hypothesis in statistical mechanics is that for isolated systems of 
physical interest (complicated nonlinear systems with many degrees of freedom), the 
measure 

is left invariant by the equations of motion and is the only such measure. In other 
words, the hypothesis states that the microcanonical ensemble is defined by the measure 
in Eq. 7. Note that the probablity density in Eq. 7 is flat; that is, all regions of phase 
space consistent with the conservation laws are equally probable. 

To understand why this assumption of equal a priori probabilities is, in effect, a 
restatement of the ergodic hypothesis, one must realize that the only systems under 
consideration in classical statistical mechanics are Hamiltonian systems (systems for 
which the equations of motion can be derived from a Hamiltonian principle). The 
existence of a Hamiltonian function H ( { q } ,  {p}) means that the equations describing 
the flow through phase space, Eqs. 1, can be written in the form 

and 

Here [ f ,  g ]  denotes the Poisson bracket: 

The existence of a simplectic structure (the Poisson bracket) is a very restrictive 
condition on the flow, much more so than the mere conservation of the energy. Indeed, 
through Liouville's theorem, it guarantees the conservation of the phase-space volume 
element 

and thus it proves that the measure in Eq. 7 is invariant under Hamiltonian flows. 
Thus the first mathematical problem of constructing an invariant measure is solved for 
Hamiltonian systems. Consequently the ergodic hypothesis (Eq. 6) is automatically 
satisfied provided that the flow is fully ergodic. Proving that the flow is fully ergodic 
is the second mathematical problem related to the ergodic hypothesis and is the one 
that remains to be solved for Hamiltonian systems. If in fact the flow is not ergodic, 
then the assumption of equal a priori probabilities would not describe the time-average 
behavior of the system, at least not for all possible observables. 

Note that if the flow is fully ergodic and all allowed states are equally probable, 
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then we have an equipartition of energy; that is, the energy of the system is divided 
equally among tPe N degrees of freedom. Indeed, let us consider for simplicity 
the case of a ~ ~ n i l t o n i a n  system in which only the total energy is conserved. The 
microcanonical measure then is simply 

where the mi's $e the particle masses. Because of the symmetry of the measure 
defined by ~ q s .  11 and 12 under the interchange of the pi 's, one can easily show that 
the average kinetic energy (p?/2mi) is independent of i. Usually one uses that fact 
to define a temperature T via (p2/2m) = kT/2  (where k is the Boltzmann constant). 
such consideratioris can be extended to the normal modes of a lattice, which will be 

discussed later, are generically referred to as the equipartition of energy. 

Mathematical ~esults .  Having formulated the mathematical problem, it may be 
of imprest to state briefly what rigorous results have been obtained so far about the 
circumstances undpr which a flow is fully ergodic. 

i) oxtoby and Ularn proved in 1941 that in a bounded phase space the continuous 

ergodic are everywhere dense in the space of all continuous measure- 

preserving In other words, a topology can be chosen such that ergodic 
transformations foim the "bulk" of the whole space of continuous measure-preserving 
maps. This theor@m says nothing about the measure of the ergodic transformations, 
which may even pe vanishing. (See page 110 in "Learning from Ubm.") A corre- 
sponding theorem otating an analogous property of a real dynamical system with a finite 
number of degrees of freedom does not exist, and in fact the KAM theorem proves the 
contrary (see below). It is also known that Hamiltonian flows are quite rare among 
measure-preserving maps, and therefore the Oxtoby and Ulam result guarantees nothing 
about the density (  ̂ergodic Hamiltonian flows in the space of all Hamiltonian flows. 

ii) For finite /^ the K o ~ ~ o ~ o ~ o v - A m o l d - M o s ~ ~  (KAM) theorem (see Arnold and 

Avez 1968) that the ergodic hypothesis is violated for a certain class of 
systems. The theofem considers a completely integrable system (M = N in Eq. 7) and 
its response to an arbitrary, weak nonlinear perturbation. By a canonical transformation 
one can show that a completely integrable system with N degrees of freedom is 
equivalent to N d$coupled harmonic oscillators; hence it is a linear system, and its 
motion in phase  pace occurs on hypertori rather than on the whole phase space. 
The KAM theorenl states that in the phase space of a weakly nonintegrable (weakly 
nonlinear) HamiltoIliEiIl, some motions still are restricted to tori, and these tori occupy 

a nonzero measure of the phase space. (Figure 1 shows a typical structure of the 
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PHASE SPACE OF A WEAKLY phase space for a weakly nonintegrable Hamiltonian.) Thus these systems have several 

NONINTEGRABLE HAMILTONIAN ergodic 

SYSTEM 
iii) In 1963 Sinai proved the ergodic hypothesis for certain billiard systems (Harnil- 

Fig. The 'ystem has four degrees Of free- tonian systems in which hard spheres bounce elastically off each other and the container 
dom, but conservation of energy allows us 

walls). The geometry of the boundary turns out to be a crucial factor in proving that 
to display the phase space in three dimen- 

sions, which represent the variables x ,  y, the flow is ergodic. 

and g. The phase space contains nested 
invariant tori on which motion is quasiperi- 
odic so that a single orbit covers a torus 
densely. The gaps between the tori are 
chaotic regions in which the orbits appear 

as random as the toss of a coin. Since 
the nested tori have a finite measure in the 

phase space, this Hamiltonian system vio- 
lates the ergodic hypothesis. 

iv) It has not been possible to prove the ergodic hypothesis even for a gas of hard 
spheres, although it is generally believed to be true in this case. 

v) For a long time the general belief was that the KAM theorem poses no problem 
for the ergodic hypothesis once the thermodynamic limit (the limit as N + oo at 
fixed density) is taken. Counterexamples to this claim have recently been constructed 
(Bellissard and Vittot 1985), but it is premature to judge their generality. 

vi) There exists no satisfactory formulation of the ergodic hypothesis for continuous 
media (field theory), since it is not known how to generalize the microcanonical measure 
to systems with an infinite number of degrees of freedom, especially when the total 
energy of the system is finite. It is interesting that while appropriate ensemble averages 
have not been defined, the existence of global solutions (in time), and therefore the 
existence of time averages, for several interesting field theories (such as classical 
electrodynamics and Yang-Mills theories) has been established (Eardley and Moncrief 
1982). 

In conclusion, from a mathematical point of view, the ergodic hypothesis has 
proved to be one of the most difficult problems in the last hundred years or so. Only 
two flows, both billiards, have been proven to be ergodic. Perhaps today's computers 
will speed up the rate of analytical progress by helping our intuition about the nature 
of the flow. 

The Physics of the Ergodic Hypothesis 

Next I wish to analyze the ergodic hypothesis from a physical point of view. 
Undoubtedly, a dynamical approach to a physical system with many degrees of freedom, 
such as a gas, is impossible, and a statistical one must be developed. In doing 
so one must endeavor to capture the right physics. If the attempt has been really 

successful, the theory will withstand experimental scrutiny. But what should be done 
if the predictions go astray, as did the predictions of classical statistical mechanics for 
blackbody radiation? A sensible approach is to go back and examine what fundamental 
assumptions were made, which is what I shall do now. 

The first question that must be settled is what should be considered "the system." 
Indeed the instruction in statistical mechanics is to integrate over all canonical positions 
and momenta with a certain measure. However, one must decide which degrees of 
freedom to include. For instance, take the case of the diatomic gas. Each molecule 
has two atoms, each atom has its own electrons and nucleus, and the latter in turn is 
made of quarks and gluons, say. Moreover, since the constituents are charged, they are 
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coupled to the electromagnetic field inside the container (and also to the gravitational 
field). Probably most readers will think that this is not a serious question: at a certain 
temperature only certain degrees of freedom are excited, and these are the only ones 
to be integrated over. Hidden within this superficially sensible-sounding answer is one 
of two extremely important assumptions: 

i) The ergodic hypothesis is strictly false, so that certain degrees of freedom, 
although dynamically coupled, never get excited and act as spectators to the thermal 
equilibrium that sets in for the remaining degrees of freedom. 

ii) Or, the system dynamically develops largely different time scales, and the 
number of degrees of freedom that are more or less in equilibrium keeps increasing 
with time. 

In either case the use of statistical mechanics becomes more subtle, since only 
by gaining a good grasp of the underlying dynamics can one decide what degrees 
of freedom are relevant in certain circumstances. In particular, there is no a priori 
reason to believe that the contributions to the specific heat of the vibrations and the 
rotations of a diatomic gas ought to be equal at all temperatures and during a typical 
time of observation, as was assumed in the classical predictions of statistical mechanics. 
Neither is there any reason to predict the Rayleigh-Jeans distribution (Fig. 2) for black- 
body radiation (which assumes the equipartition of energy between all modes of the 
electromagnetic field), since some modes of the cavity may be effectively decoupled 
(case i above) or so weakly coupled that they haven't had time to thermalize (case 
ii). Thus the standard examples for the breakdown of classical statistical mechanics 
may reflect an inappropriate application of the ergodic hypothesis rather than a need 
for quantization, as is usually argued in physics textbooks. 

The second important question that must be addressed in deciding the relevance 
of the ergodic hypothesis for physics is why we are using a statistical description in a 
given physical situation. Consider, for instance, the measurement of the specific heat 
of a diatomic gas. Typically one lets the gas "reach equilibrium" with a reservoir at a 
given temperature and then makes a certain macroscopic measurement during a certain 
time interval. To obtain reasonable statistics, the measurement is repeated several times. 
Clearly the process just described involves three types of averaging at the molecular 
dynamics level: 

i) over initial conditions (each repetition of the measurement involves a different 
set of initial conditions); 

ii) over time (each measurement extends over a certain time, during which the gas 
-valves as a dynarnical system); and 

iii) over microscopic degrees of freedom (this type of averaging is inherent in the 
measurement of macroscopic variables). 

BLACKBODY RADIATION AT 1600 K 

Fig. 2. Theoretical predictions and exper- 
imental data for the power radiated by a 
blackbody at 1600 K. The classical Rayleigh- 
Jeans law, u(v, T)  = ( ~ T ~ / C ~ ) V ~ ~ J ,  is based 
on equipartition of energy among all the 
modes of an electromagnetic field. The total 

(kinetic plus potential) energy in each mode 
is kJ, and the number of modes in the fre- 
quency interval (v, v+dv) is 8irv2/c3, which 
is proportional to A ' .  The quantum Planck 
law, in agreement with experiment, yields a 
peaked distribution that decreases rapidly 
with wavelength. The Planck law is based 
on the assumption that the energy in each 
mode is quantized; that is E = nhv, where 
n is an integer and h is Planck's constant. 

I 

\ Rayleigh-Jeans 

Wavelength (pm)  

Before analyzing in detail the likely statistical relevance of each of these averaging 
operations, let me hasten to say that clearly only the averaging over time has anything 
to do with the ergodic hypothesis. Those physicists who believe that the ergodic 
hypothesis is not important for the foundations of statistical mechanics dismiss the 
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Excerpts from "Studies o, 
Nonlinear Problems" by 
Fermi, Pasta, and Ulam 

his report is intended to be the first 

T one of a wries dealing with the be- 
havior of certain nonlinear physi- 

cal systems where the nonlinearity is intro- 
duced as a perturbation to a primarily lin- 
ear problem. The behavior of the systems 
is to be studied for tiroes which are long 
compared to the characteristic periods of the 
corresponding linear problems. 

The problems in question do not seem to 
admit of analytic solutions in closed form, 
and heuristic work was performed nmer- 
ically on a fast electronic computing ma- 
chine (MANIAC I at Los Alamos).* The 
ergodic behavior of such systems was stud- 
ied with the primary aim of establishing, 
experimentally, the rate of approach to the 
equipartition of energy among the various 
degrees of freedom of the system. Several 
problems will be considered in order of in- 
creasing complexity. This paper is devoted 
to the first one only. 

We imagine a one-dimensional contin- 
uum with the ends kept fixed and with 
forces acting on the elements of this 
string. In addition to tihe usual linear term 
expressing the dependence of the force on 
the displacement of the element, this force 
contains higher order witas, For the pur- 
pases of numerical work this continuum is 
replaced by a ftmte ambar of points (at 

tual computation) so that 
the partial differential equation defining tae 
motion of (bis s aced by a finite 
number of total equations. 

The solution to the cocreapondmg lib 
ear problem is a periodic vibration of the 

string. If (he initial position of the 
is, say, a stogie sine wave, the serin 
oscillate in this mode indefinitely. 
in@ witfa the string in a simple 
tion. for example in the first 

would assume more and 
hapes, and. for t tending 

to infinity, would get into states where all 
tfie Fourier modes acquire increasing impor- 
mw, In order to see this, the shape of the 
string, that is to say . . . [its displ 
wad (he kinetic energy . . . were anal 
periodically in Fourier series. . . . 

Let us say here that the results of our 
computations show features which were, 
from the beginning, surprising to us. In- 

al, continuous flow of en- 
first mode to the higher 

modes, all of the problems show an en- 
tirely different behavior, Starting in one 
problem with a quadratic force and a pure 
sine wave as the initial potition of the 
string, we indeed observe initially [see fig- 
ures on next page] a gradual increase of en- 
ergy in the higher modes as predicted (e-g., 
by Rayleigh in an infinitesimal analysis). 
M ~ d e  2 starts increasing first, followed by 

the other mode 
ample, mode 2 decides, as it were, to in- 
crease rather rapidly at die cost af all other 
modes and becomes predominant. At one 
time, it has more energy than all the others 

most of its tune in 
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statistical relevance of time averaging for macroscopic observables. 
The averaging over initial conditions should not be of much consequence statisti- 

cally. Indeed, even if one assumes that the gas is simply a collection of hard spheres 
(with no internal structure), the gas still constitutes a dynamical system with somewhere 
on the order of degrees of freedom. Unless the initial state is very special or the 
time of observation very short, repeating an experiment ten or a hundred times should 
not have important consequences. In fact, a typical measurement lasts at least a few 
minutes; during such a time interval each molecule undergoes, at room temperature 
and normal pressure, about lo7 collisions. Hence the number of states through which 
the gas passes dynamically (in time) is much larger than that due to the repetition of 
the experiment. Of course, as one lowers the temperature or the pressure, the colli- 
sions become more rare, so the time of observation must be increased to avoid large 
fluctuations in individual measurements. 

Perhaps the most important averaging is the "coarse graining" involved in obtaining 
macroscopic variables. Two large numbers are involved in a typical measurement: the 
total number of degrees of freedom of the system and the number of degrees of freedom 
that are averaged together to obtain a macroscopic variable. The second number appears 
naturally in a system containing a large number of indistinguishable constituents. For 
instance, in determining the local density in a gas, one does not care about the trajectory 
of any single particle but rather about the average number of trajectories crossing a 
macroscopic volume at any time. Use of the laws of large numbers (see "A Tutorial 
on Probability, Measure, and the Laws of Large Numbers") in this context guarantees 
that, in spite of the fact that the underlying dynamics may be time-reversal invariant, 
macroscopic variables (almost) always tend to relax to their equilibrium values. In other 
words, because of the large numbers involved in specifying macroscopic variables, 
the macroscopically specified state of the system has overwhelming probability to 
evolve towards the equilibrium state, even if the microscopic dynamics is time-reversal 
invariant. Hence, an arrow of time exists at the macroscopic level even if it does not 
at the microscopic level. This frequently stated paradox of statistical mechanics is a 
straightforward consequence of the laws of large numbers. 

Confronting the Ergodic Hypothesis with Experiment 

Having discussed the types of averaging involved in a real experiment, let us 
reconsider the experimental circumstances under which classical statistical mechanics 
could be expected to work. Historically, statistical mechanics appeared in connection 
with the endeavors to study, for example, very nearly ideal gases. (In an ideal gas 
the molecules are free except for occasional elastic collisions with each other or with 
the walls of the container.) Its foundations were statistical (predictions were based 
on considering an ensemble of systems, primarily the microcanonical or the canonical 
ensemble), in spite of the efforts of Boltzmann and Maxwell to give it a dynamical 
basis by invoking the ergodic hypothesis. 

The fundamental assumption of statistical mechanics for an isolated system is 
the equal a priori probability on the hypersurface (in phase space) determined by all 
the conservation laws (Eq. 7). This probability measure defines the microcanonical 
ensemble. If the underlying dynamics is derivable from a Hamiltonian, by Liouville's 

FIGURES FROM THE FERMI- 
PASTA-ULAM PAPER 

- Alamos Science Special Issue 1987 



The Ergodic Hypothesis 

theorem such a probability measure is invariant in time. Thus the only reason time 
averages could be different from ensemble averages would be a lack of ergodicity in 
the flow. In the case of a system consisting of only one species of indistinguishable 
particles, this potential difficulty is suppressed first by averaging over many initial 
conditions (so that even if the flow is not ergodic, the starting points may fall in different 
"ergodic" subregions) and second by measuring time-average values of macroscopic, not 
microscopic, variables. The chances that under these circumstances one would observe 
a difference between the predictions of statistical mechanics and experiment are very 
slim (recall the laws of large numbers), and indeed under these experimental conditions 
the predictions of classical statistical mechanics enjoyed great success. This explains 
the utter confidence of most physicists in the predictive power of statistical mechanics 
and their dismissal of the ergodic hypothesis as a technical, probably irrelevant detail. 

On the other hand, suppose one uses the theory to make predictions about a di- 
atomic gas, which even under the most simplifying assumptions has at least two species 
of indistinguishable degrees of freedom, say vibrations and translations. Without in- 
voking the ergodic hypothesis, I can think of no a priori reason for the contributions to 
the specific heat of these two types of motions being found equal in typical measure- 
ments. In fact, even if the ergodic hypothesis is true, it is possible that the coupling 
of these two types of motions is so weak that during typical times of observation they 
do not reach equilibrium with each other. Yet it was the assumption that the two types 
of motion are in equilibrium that led to the discrepancy between classical statistical 
mechanics and experiment. Therefore I feel that it is unjustified to rely upon the many 
successes of statistical mechanics to dismiss questions regarding its foundations. On 
the contrary, an understanding of the ergodic hypothesis and especially of the times 
involved for exciting certain degrees of freedom should be equally challenging for the 
mathematician and the physicist. 

Quantum Mechanics: A Case of Mistaken Identity? I would like to close this brief 
review of these complicated and long-standing problems with some speculations about a 
possible connection between the ergodic hypothesis and the necessity of using quantum 
mechanics at the microscopic level. First a few words about the blackbody radiation 
law. I have tried to emphasize the importance of measuring macroscopic averages, 
as well as that of particle indistinguishability, in obtaining agreement between the 
predictions of statistical mechanics and experiment. I think the case of the blackbody 
falls outside this realm. Consider a cubic lattice in D dimensions. At each site let 
there be a particle sitting in some anharmonic potential, attached through harmonic 
springs to its ID nearest neighbors. If the boundary conditions are periodic, the system 
consists of identical yet distinguishable (by site coordinates) particles. We could form 
macroscopic quantities by averaging over the positions or velocities of all the particles 
in a cube of macroscopic size and expect reasonable agreement with the predictions 
of statistical mechanics. Alternatively we could describe the system in terms of its 
normal modes and attempt to verify the classical prediction, namely, the Rayleigh- 
Jeans energy distribution shown in Fig. 2 (that is, the equipartition of the energy among 
all the normal modes). Many such studies have been performed numerically, the first 
being the celebrated 1955 work of Fermi, Pasta, and Ulam (see "The Fermi-Pasta-Ulam 
Problem"). It is always found that at sufficiently low energy density, the distribution of 

Los Alamos Science Special Issue 1987 



The Ergodic Hypothesis 

energy among the modes of the lattice differs drastically from the statistical prediction 
and in fact depends upon the initial conditions. Obviously either these systems are not 
ergodic, or at least the times of thermalizing the different modes are much longer than 
a typical time of numerical integration. And no macroscopic averaging is available 
to save the day! It is also known that leaving the energy density fixed and refining 
the lattice (taking the continuum limit) increases the discrepancy (Patrascioiu, Seller, 
and Stamatescu 1985). Although such results have been accumulating for over thirty 
years now, they are not yet understood. Some say the systems are so close to being 
integrable that KAM tori or very slow diffusion rates occur in the phase space. Others 
claim that statistical mechanics should hold only in the thermodynamic limit (which 
is clearly not attainable numerically). Most physicists dismiss the whole story, since 
they "know" that statistical mechanics works in real life. I think this is a very narrow 
point of view: the problem being discussed is very much like that of the blackbody 
radiation law, and that was one of the failures of classical statistical mechanics. Is there 
a good theoretical (dynamical) basis for predicting the Rayleigh-Jeans distribution in 
classical physics, as the standard textbooks claim? Or are we pushing the statistical 
predictions in a domain for which there is no reason to expect them to hold? In "Does 
Equipartition of Energy Occur in Nonlinear Continuous Systems?" I describe some 
numerical experiments I have performed to test the validity of the statistical-mechanics 
predictions for a one-dimensional version of the blackbody problem and for the specific 
heats of systems with more than one species of degrees of freedom. Notably I found 
that, over the times of observation available in computer experiments, the systems failed 
to fulfill the ordinary expectations of an equipartition of energy. The same discrepancy 
has been found in many other numerical experiments. 

It is well known that the resolution of the above-mentioned experimental diffi- 
culties of statistical mechanics (specific heats and blackbody radiation) was found in 
abandoning the classical approach to physics in favor of the quantum one. As men- 
tioned in the introduction, this revolution has had an unqualified experimental success, 
although it has raised serious epistemological questions, which continue to haunt us 
more than sixty years after the advent of the quantum theory. I would like to give 
a brief outline of a heresy that I have advocated for a few years now (Patrascioiu 
1983), one directly connected to the ergodic hypothesis. As I mentioned earlier, if 
one contemplates a dynamical basis for statistical mechanics, one is faced with a real 
dilemma. The accepted formulation of the electromagnetic and the gravitational inter- 
actions demands that, in essence, everything in the universe interact with everything 
else. (This is so because of the long-range nature of these interactions.) In fact, the 
notion of an isolated object (or even system) is clearly an abstraction without any a 
priori physical basis, since ultimately everything is coupled to everything else through 
the electromagnetic and gravitational fields. All we can hope is either that the ergodic 
hypothesis is strictly false or that the times needed to excite certain degrees of freedom 
are so large that we can ignore them under some circumstances. In either case certain 
prejudices that have been passed from generation to generation should be abandoned 
and their bases be opened for investigation. For instance, in the absence of a dynamical 
calculation, there is no basis to claim that Planck's distribution for blackbody radia- 
tion is irreconcilable with classical electromagnetism. (In fact, the distribution found 
numerically and shown in Fig. 2 of the sidebar very much resembles Planck's law.) 

continued on page 278 
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Does 
Equipartition 
of Energy 
Occur in 
Nonlinear 
Continuous 
Systems? 

A ONE-DIMENSIONAL MODEL 
OF THE BLACKBODY PROBLEM 

Fig. 1. The blackbody problem was mod- 
eled as the interaction of a linear string 
(which represents the electromagnetic field) 
and two nonlinear oscillators (which repre- 
sent atoms in the walls of the cavity). Motion 
of both the string and the oscillators is re- 
stricted to the z direction and is described 
by the function z ( x ,  t ) .  

x = - 1  

T 
he celebrated work of Ferrni, Pasta, and Ulam was the first of numerous attempts 
to study the distribution of energy in nonlinear continuous media. These attempts 
have all been indirect in that the systems are simulated by lattices of particles 

interacting through nonlinear potentials. The results have consistently failed to support 
the classical point of view regarding equipartition of energy-and yet they have stirred 
little excitement in the physics community. Perhaps this is so for two reasons: (i) the 
systems analyzed may be subject to an infinite number of conservation laws (and thus 
may be effectively linear), so that the individual degrees of freedom are not coupled 
and equipartition of energy cannot occur; (ii) the results may simply be artifacts of the 
lattice simulations. 

Here I present some results from two of my own studies, the first of a one- 
dimensional model of the blackbody problem (Adrian Patrascioiu, Physical Review 
Letters 50(1983): 1879) and the second of a three-dimensional system that may give 
insight into the specific heats of systems with two species of degrees of freedom, such 
as the rotations and vibrations of diatomic molecules (K. R. S. Devi and A. Patrascioiu, 
Physica D 1 l(1984): 359). 

In the case of blackbody radiation, the continuous medium (the electromagnetic 
field) is linear. Nonlinearity is introduced into the problem through the interaction of 
the field with the atoms in the walls of the cavity. Let us investigate a one-dimensional 
version of this problem, two nonlinear oscillators (particles and nonlinear springs) 
interacting through a linear string (Fig. 1). The string represents the electromagnetic 
field, and the oscillators represent the atoms. This model has the advantage that the 
string can be treated exactly so that no spatial lattice is needed. 

The string and the particles move in the z direction only. The equation of motion 
for the string is 

and the equations of motion for the particles on the left and right, respectively, are 

and 

Here m is the mass of each particle, p is the string tension, and the nonlinear spring 
force F(z )  is defined by 

where 

These equations are written in units such that the length of the string is 2 and 
the speed of sound is 1. The most general form for the solution of Eq. 1 is z ( x ,  t )  = 
f (t + x )  + g(t - x). Substituting this general solution into Eqs. 2 and 3 yields a system 
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continued from page 275 

Nor is there any basis to the claim that the classical atom is inevitably unstable be- 
cause of the "ultraviolet catastrophe" (escape of all of the energy into the ultraviolet 
modes of the electromagnetic field, as required by the equipaxtition-of-energy principle 
of classical statistical mechanics). After all, maybe classical electromagnetism leads 
to a nonergodic flow (if the notion of ergodicity makes sense at all for a continuous 
medium) or maybe the diffusion of energy to the high modes is so slow that it has not 
occurred appreciably in the twelve to eighteen billion years since the big bang. That 
such slow diffusion is not a far-fetched supposition follows from some results obtained 
in the last few years. Since point charges have infinite self-energies, let us spread 
them by introducing a charged scalar (zero-spin) field. It has been shown rigorously 
that, in a certain gauge (axial), the system of coupled nonlinear equations describing 
the interaction of the classical electromagnetic field with this classical charged field 
has finite-energy-density solutions for all times. Moreover, these solutions retain their 
initial smoothness (number of derivatives). Using this latter property one can show that 
after an arbitrarily long time of evolution, an infinite number of normal modes of these 
fields are arbitrarily close to their initial energies (Patrascioiu 1984). Whereas there is 
no guarantee that this model captures the true physics in the universe, it seems hard to 
imagine a field whose modes therrnalize in a finite amount of time. 

So perhaps quantum mechanics is nothing more than classical statistical mechanics 
done the right way in a universe filled with particles interacting primarily via electro- 
magnetic and gravitational forces. If so, its mysteries should be understandable once 
the complicated Brownian process produced by particles constantly absorbing and emit- 
ting radiation is mastered. While this scenario may seem far-fetched to many, I think 
it arises inescapably from contemplating the foundations of statistical mechanics. It 
does not contradict the experimentally observed violation of Bell's inequality unless 
the latter persists for truly space-like settings of the magnets. It has epistemological 
value and would, for example, allow the computation of the fine-structure constant and 
its variation with temperature (Patrascioiu 1981). 

In conclusion, I think neither physicists nor mathematicians should close the book 
on the venerable problem of the ergodic hypothesis, and I guess some big surprises 
may be in store once the problem is better understood. H 
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